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A new theoretical model is developed to evaluate the total potential energy of
interaction between two charged flat plates in aqueous solutions. Instead of using
the Boltzmann distribution to predict the ionic concentrations of counterion and
coion, which is not correct for small confined spaces, this modified model deter-
mines the ionic concentrations of counterion and coion based on the Poisson
equation, the Nernst equation, and the mass conservation condition. Instead of
the approximations used in the traditional model, the osmotic pressure is directly
evaluated based on the ionic concentration distributions predicted by this new
model. Finally, the total interaction energy is examined and compared with that
predicted by the traditional model. It has been found that for high ionic concen-
tration solutions, the traditional model tends to overestimate the total interaction
energy due to the approximations employed in simplifying the osmotic pressure.
However, for dilute solutions, the traditional model tends to underestimate the
total interaction energy at small separation distance due to the misuse of the
Boltzmann distribution in calculating the ionic concentration.
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INTRODUCTION

The understanding of adhesion of charged surfaces in aqueous elec-
trolyte solutions is of great importance for a wide spectrum of appli-
cations in applied science and engineering. The adhesion phenomena
in ionic solutions are dependent, at least, on electrostatic and van der
Waals forces, as outlined in the Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory [1].

One general prediction of the DLVO theory is that charged surfaces
will attract each other at a small separation distance (i.e., the primary
energy minimum) because of the attractive van der Waals forces being
dominant over the electrostatic repulsion forces at small separation
distance [2]. However, it has been found that the experimentally mea-
sured repulsive forces between charged surfaces at close separations
could not be explained by the DLVO theory [3�6]. A possible reason
that the DLVO theory fails to explain the large repulsive forces is
the misuse of the Poisson�Boltzmann equation, or the misuse of the
Boltzmann distribution in determining the ionic concentration field.
One must realize that the derivation of the Boltzmann distribution
requires an infinitely large aqueous phase so that the electrical poten-
tial is zero in the liquid far away from the charged surface and that the
ionic concentrations in the region far away from the charged surface
are equal to the original bulk ionic concentration [7, 8]. However,
due to the presence of the charged solid�liquid interface, there exists
an excess of counterions and a deficit of coions in the electrical double
layer (EDL) region. Therefore, it should be expected that there exists a
deficit of counterions and a surplus of coions in the bulk liquid outside
of the electrical double layer. The conventional Boltzmann distribution
cannot show this logical expectation. This is because a key underlying
assumption of the Boltzmann distribution is an infinitely large liquid
phase. It is understandable that if the size of the system is sufficiently
large, bulk ionic concentration is sufficiently high, or both, such a defi-
cit and such a surplus are negligible and the Boltzmann distribution is
acceptable.

However, when the separation distance between two charged
surfaces is sufficiently small (i.e., in the case of EDL overlapping,
which causes the electrostatic repulsive interaction), and the solution
is a dilute electrolyte solution, the excess of counterions and the
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deficit of coions in the EDL region will result in a significant change
in the concentrations of counterion and coion in the region outside
the EDL. In order to satisfy the conservation condition that the total
ion number is constant in a given system, the concentration of coun-
terion in the liquid region away from the charged surfaces is expected
to be lower than the original bulk concentration due to the accu-
mulation of counterions in the EDL region close to the charged
surfaces. The concentration of coions in the liquid region away from
the charged surfaces is expected to be higher than the original bulk
concentration due to the deficit of coions in the EDL region close
to the charged surfaces. Consequently, neither the concentration of
counterions nor the concentration of coions at the middle plane of
these two charged surfaces is equal to the original bulk concentration.
Therefore, the assumption that the ionic concentration in the liquid
region in the middle between two charged surfaces is equal to the
original bulk concentration, which is used to derive the Boltzmann
distribution, is not correct. Thus, the DLVO theory, which involves
the use of the Boltzmann distribution, cannot properly predict the
electrostatic repulsive energy and hence the total interaction energy.

The objective of this study is to develop a new model to investigate
the EDL repulsive energy and to evaluate the total potential energy of
interaction (i.e., the EDL repulsive interaction and the van der Waals
attractive interaction) between two charged surfaces. Instead of using
the Boltzmann distribution, the ionic number conservation condition
and the Nernst equation are used in this new model to find the ionic
concentration field in the liquid between two charged surfaces. A
correct boundary condition for the potential field at the middle plane
of these two surfaces is developed and applied to this model. The ionic
concentration field and electrical potential field are obtained by
numerically solving this model. The total potential energy is then
examined using the obtained ionic concentration from the developed
model.

THEORETICAL MODEL

Attraction Energy

The total potential energy of interaction is the sum of the repulsive
energy and the attraction energy. Consider two identical, charged flat
surfaces in an aqueous solution, as illustrated in Figure 1. The attrac-
tion force or the van der Waals force can be evaluated by [9]

FA ¼ A

6pD3
; ð1Þ
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where FA is the attraction force, A is the Hamaker constant chosen as
A ¼ 2:2� 10�20 J in this study, and D is the separation distance
between the two flat plates. The attraction energy can be obtained
by integrating Equation (1) over the separation distance,

WA ¼ � A

12pD2
: ð2Þ

Repulsive Energy

The repulsive interaction occurs when two electrical double layers of
the same sign begin to overlap. It can be analyzed by examining the
osmotic pressure, which develops due to the accumulation of ions
between the plates. Thermodynamically, we know

dP

dx

� �
T

¼
X

ni
dli
dx

� �
T

; ð3Þ

where ni is the number density of the ith ion. The chemical potential of
an ion may be written as

li ¼ ziewþ kbT lnni; ð4Þ

FIGURE 1 Schematic of two charged flat surfaces in an aqueous solution.
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Where zi is the valence of the ith ion, e is the elemental charge, w
is the electrostatic potential at any point between the two surfaces,
kb is the Boltzmann constant, and T is the absolute temperature.
Inserting Equation (4) into Equation (3) and considering a constant
temperature, we obtain

dP

dx
¼

X
zieni

dw
dx

þ kbT
dni

dx

� �
: ð5Þ

The electrical potential field is described by the Poisson equation,

d2w
dx2

¼ � qe
ee0

; ð6Þ

where qe ¼
P

zieni is the net charge density. The Poisson equation
can be rearranged as follows:

X
zieni ¼ �ee0

d2w
dx2

: ð7Þ

Using the relationship

d

dx

dw
dx

� �2

¼ 2
dw
dx

� �
d2w
dx2

� �
; ð8Þ

Equation (7) can be rewritten as

X
zieni

dw
dx

� �
¼ � e0e

2

d

dx

dw
dx

� �2

: ð9Þ

Substituting Equation (9) into Equation (5), we get

dP

dx
¼ � e0e

2

d

dx

dw
dx

� �2

þ
X

kbT
dni

dx

� �
: ð10Þ

The pressure change at a point x, when the two plates are brought
from infinity (x0 ¼ 1;P ¼ 0;dw=dx ¼ 0) to a separation distance, D,
can be evaluated by

PxðDÞ ¼ � 1

2
eeo

dw
dx

� �2
�����
xðDÞ

�
X

kbT n1
ix � nixðDÞ

� �
: ð11Þ

In order to describe the osmotic pressure in terms of the ionic
concentration distribution, Equation (11) can be further analyzed by
introducing a relationship between potential gradient and ionic
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concentration. The chemical equilibrium condition, usually referred to
as the Nernst equation [10],

1

ni

dni

dx
¼ � zie

kbT

dw
dx

; ð12Þ

can be rewritten as

Xdni

dx
¼ �

X zieni

kbT

dw
dx

: ð13Þ

Substituting Equations (7) and (8) into Equation (13) yields

Xdni

dx
¼ 1

2

ee0
kbT

d

dx

dw
dx

� �2

: ð14Þ

Integrating Equation (14) from the middle plane between the two flat
plates separated by a distance, D, to a position, x, we obtain

1

2
ee0

dw
dx

� �2
�����
xðDÞ

¼ kbT
X

nixðDÞ �
X

ni midðDÞ

� �
; ð15Þ

where
P

ni midðDÞ is the total ionic concentration at the middle plane of
the two flat plates with a separation distance of D. It should be noted
that a symmetric boundary condition, x ¼ xmid;dw=dx ¼ 0; has been
applied here. Substituting Equation (15) into Equation (11), we have

PxðDÞ ¼ kbT
X

ni midðDÞ � n1
ix

� �
: ð16Þ

Because PxðDÞ is a uniform pressure across the gap (independent of
position, x) acting on the electrolyte ions and the surfaces we will drop
off the subscript x in Equation (16), that is,

PðDÞ ¼ kbT
X

ni midðDÞ � n1
i

� �
: ð17Þ

Note that ni midðDÞ is the electrolyte concentration at the middle plane
when the separation distance is a finite value, D. n1

i is the electrolyte
concentration at the middle plane when the surfaces are separated
infinitely far away. In analogy to the ideal gas law, P ¼ RTq, we can
easily understand that kbTn is a pressure: the higher the density
the higher the pressure. Similarly, kbT

P
ni midðDÞ � n1

i

� �
is a pressure

difference caused by the density difference; the higher the density
difference; the higher the pressure difference. This pressure difference
is usually referred to as the osmotic pressure. n1

i is the original
electrolyte concentration, which is constant for a given system. The
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determination of osmotic pressure depends on how one determines the
ionic concentration fields of electrolyte solution at the middle plane
when the separation distance is a finite value, D.

Traditional Treatment

In the traditional treatment, the Boltzmann distribution,

ni ¼ n1
i exp � ziew

kbT

� �
; ð18Þ

is applied to Equation (17) to find the osmotic pressure. For a 1:1 elec-
trolyte such as KCl or NaCl, it can be expressed as

PðDÞ ¼ kbTn1 ðe�ewmid=KbT � 1Þ þ ðeþew
mid=KbT � 1Þ

h i
: ð19Þ

Equation (19) may be further simplified under certain assumptions
[9]:

PðDÞ � e2w2
midn1
kbT

; ð20Þ

where n1 is the bulk concentration and wmid is the electrical potential
at the middle plane. It can be shown that the potential at the middle
plane is approximately [2]

wm � 8kbTc
e

exp � jD
2

� 	
; ð21Þ

where c ¼ tanh zew0=4kbTð Þ and w0 is the electrical potential at the
solid�liquid interface. Using the above equations, we can show that
the osmotic pressure is given by

PðDÞ ¼ 64kbTn1c2e�jD: ð22Þ

This equation gives the electrical double layer interaction for weak
overlapped EDL fields between two identically charged surfaces of
constant surface potential. The interaction free energy per unit sur-
face area corresponding to the above pressure can be obtained by inte-
grating the pressure, P, with respect to the separation distance, D:

WðDÞ ¼ 64kbTn1c2

j
e�jD: ð23Þ

It should be pointed out that the Boltzmann distribution, Equation
(18), is derived by employing the boundary condition that requires
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the liquid to be infinitely large. This condition cannot be satisfied
for two charged flat plates with a very small separation distance. As
we explained in the Introduction, the ionic concentrations at the
middle plane of these two flat plates no longer obey the Boltzmann
distribution.

A Modified Model

As discussed above, a correct model for evaluating osmotic pressure
should be derived without using the Boltzmann equation, Equa-
tion (18). The Poisson equation, Equation (6), and the chemical
equilibrium conditions, Equation (12), are valid for the system con-
sidered here. Integrating Equation (12) from the middle plane,
where

x ¼ H; nþjH ¼ nH
þ ; n�jH ¼ nH

� ; wjH ¼ wH; ð24Þ

to a point between two flat plates yields

ni ¼ nH
i exp

zie

kbT
wH � wð Þ

� 	
;

where nH
i is the concentration of the ith ion at the middle plane and wH

is the unknown electrical potential at the middle plane. Further apply-
ing the Debye-Hückel approximation yields

ni ¼ nH
i 1þ zie

kbT
wH � wð Þ

� 	
: ð25Þ

Substituting Equation (25) for both counterion and coion into
Equation (6) leads to

d2w
dy2

� e

ee0kbT
nH
þ þ nH

�
� �

w ¼ e

ee0
nH
� � nH

þ
� �

� e

kbT
nH
� þ nH

þ
� �

wH

� 	
: ð26Þ

The boundary conditions for Equation (26) are

x ¼ 0; w ¼ w0; ð27aÞ

x ¼ H; w ¼ wH: ð27bÞ

Equation (26) together with the above boundary conditions can be
solved analytically, and the solution is given by

wðxÞ ¼ ðwH � B� w0Þ sinhð
ffiffiffiffi
A

p
x�Hð ÞÞ

sinhð
ffiffiffiffi
A

p
HÞ

þ B sinhð
ffiffiffiffi
A

p
xÞ

sinhð
ffiffiffiffi
A

p
HÞ

� Bþ wH ; ð28Þ
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where the parameters A and B are defined as

A ¼ e2

ekbT
nH
þ þ nH

�
� �

; ð29aÞ

B ¼ kbT

e

nH
� � nH

þ
nH
� þ nH

þ
: ð29bÞ

Applying the symmetric boundary condition at the middle plane,

x ¼ H;
dw
dx

¼ 0; ð30Þ

to Equation (28), we obtain

wðxÞ ¼
�B cosh

� ffiffiffiffi
A

p
H

�
sinh

� ffiffiffiffi
A

p
x�Hð Þ

�
sinh

� ffiffiffiffi
A

p
H
�

þ
B sinh

� ffiffiffiffi
A

p
x
�

sinh
� ffiffiffiffi

A
p

H
� � B cosh

� ffiffiffiffi
A

p
H
�
þ w0: ð31Þ

The concentrations of counterion and coion can be determined by sub-
stituting Equation (31) into Equation (25):

nþ ¼ nH
þ 1þ eB

kbT

cosh
ffiffiffiffi
A

p
H sinh

� ffiffiffiffi
A

p
x�Hð Þ

�
sinh

ffiffiffiffi
A

p
H

� sinh
ffiffiffiffi
A

p
x

sinh
ffiffiffiffi
A

p
H

þ 1

" #( )
;

ð32aÞ

n� ¼ nH
� 1� eB

kbT

cosh
ffiffiffiffi
A

p
H sinh

� ffiffiffiffi
A

p
x�Hð Þ

�
sinh

ffiffiffiffi
A

p
H

� sinh
ffiffiffiffi
A

p
x

sinh
ffiffiffiffi
A

p
H

þ 1

" #( )
:

ð32bÞ

From Equations (31), (32), and (29), it can be seen that in addition to
the geometrical variable x, the distributions of the potential and ionic
concentrations are functions of two unknown parameters, nH

þ ; andn
H
� .

In order to determine these two unknowns, we need to apply the ionic
number conservation conditions to this system, which is similar to
that reported in Ren and Li [11]. The method is outlined belows.

Mass Conservation Equation

According to the site-dissociation model [12], the H3O
þ and OH� ions

in the aqueous solution play a direct potential-determining role at the
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inorganic oxide-aqueous-solution interface. Either H3O
þ or OH� ions

will be adsorbed onto the surface, and the surface can become charged
either positively or negatively, depending on the pH value of the sol-
ution. The surface charge density can be evaluated by

r0 ¼
eNsd sinh

�
~wwN � ~ww0

�
1þ d sinh

�
~wwN � ~ww0

� ; ð33Þ

where Ns is the site density on oxide surfaces, and ~ww0 is the nondimen-
sional surface potential, given by

~ww0 ¼ ew0

kT
: ð34Þ

~wwN is the nondimensional Nernst potential given by

~wwN ¼ 2:303ðpHz � pHÞ; ð35Þ

where pHz is the pH value when the solid surface reaches the point of
zero charge (p.i.z.) [12], and d in Equation (33) is a parameter defined
as

d ¼ 2:0 � 10�
DpK
2 ; ð36Þ

where DpK is the dissociation constant difference [12]. The selection of
the material properties such as pHz and DpK, etc., was done in a man-
ner similar to that of Healy and White [12]. The parameters used in
this paper are also listed in Table 1.

It should be realized that the counterions in the solution include Kþ

and H3O
þ ions, and the coions include Cl� and OH�. Applying the

mass conservation principle for these ions in the half space (from
the surface to the middle plane), we have

ZH
0

nþdx ¼
ZH
0

nKþ dxþ
ZH
0

nH3Oþ dx; ð37aÞ

TABLE 1 Property Parameters

Parameters Value

Ns 5� 1018 site=m2

pHz 5.8
pH 6.7
DpK 10.0

840 C. L. Ren et al.
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ZH
0

n� dx ¼
ZH
0

nCl� dxþ
ZH
0

nOH� dx: ð37bÞ

Consider that the original bulk ionic concentration of the simple
z : z ¼ 1 : 1 eletrolyte solution is n1

Kþ ¼ n1
Cl� ¼ n1. For simplicity, we

assume no specific adsorption of KCl ions on the surface; all Kþ and
Cl� ions are in the solution. Applying the mass conservation principle
to the half space (from the surface to the middle plane), we have

ZH
0

nKþ dx ¼
ZH
0

nCl� dx ¼ n1H: ð38Þ

When an aqueous solution is in contact with an oxide surface, either
H3O

þ or OH� ions will attach to the solid surface depending on the
pH value of the solution. For most oxide surfaces pHz, the pH value
at the point of zero charge, is between 5 and 6 [12]. If we assume
the pH value of the aqueous solution is 6.7, the oxide surface will be
negatively charged due to the attachment of OH� . At higher pH
values, the surface potential may be larger than 25mV at room tem-
perature and thus the linear (Debye-Hückel) approximation used in
this model development may be invalid. Therefore, we limit the pH
value in this model to around 6.7 and consider that the oxide solution
interface is negatively charged; that is, some OH� ions are attached to
the solid surfaces. This process will affect the balance between H3O

þ

and OH� ions in the solution. It is well known that water can dis-
sociate into H3O

þ and OH� ions. The process can be expressed as

2H2O $ H3O
þ þOH�: ð39Þ

The equilibrium between liquid water and the ions yields a constant
known as the dissociation constant of water, Kw, which is defined as
[13]

Kw ¼ ½H3O
þ�½OH��; ð40Þ

where ½H3O
þ� and ½OH�� are the ionic concentrations. If the unit of

ionic concentration is chosen as M (mol=L), Kw has a value of 10�14

at 25�C, which means in any aqueous solution at 25�C, the product
of ½H3O

þ� and ½OH�� must be equal to 10�14. Normally, the ionic con-
centrations of H3O

þ and OH� ions are given by ½H3O
þ� ¼ 10�pH and

½OH�� ¼ 10pH�14. When the solution is in contact with the solid sur-
face, the concentration of OH� ion will decrease due to the adsorption
on the solid surface. In order to reach the equilibrium condition as
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show in Equation (40) again, a certain amount of water molecules will
dissociate into H3O

þ and OH� ions. The total ionic number concentra-
tions can be expressed as

ZH
0

nH3Oþdy ¼ n0
H3OþH þNd; ð41Þ

ZH
0

nOH�dy ¼ n0
OH�H þNd �

r0
e

��� ���; ð42Þ

where Nd is the amount of water molecules dissociated into H3O
þ and

OH� ions, n0
H3Oþ and n0

OH� are the original ionic number concentration
with a unit of m�3, which can be calculated by [12]

n0
H3Oþ ¼ Na10

3½H3O
þ�; ð43aÞ

n0
OH� ¼ Na10

3½OH��; ð43bÞ

where Na is the Avogadro number. If we define the average concentra-
tions of H3O

þ and OH� ions, �nnH3O
þ and �nnOH� , through the following

equations,

�nnH3O
þ ¼ 1

H

ZH
0

nH3O
þ dy; ð44aÞ

�nnOH� ¼ 1

H

ZH
0

nOH� dy; ð44bÞ

Equations (44a) and (44b) can be rewritten as

�nnH3O
þH ¼ n0

H3O
þHþNd; ð45aÞ

�nnOH�H ¼ n0
OH�HþNd �

r0
e

��� ���: ð45bÞ

If we assume that the average ionic concentrations of H3O
þ and OH�

ions also obey the equilibrium condition, Equation (40), the product of
ionic number concentration can be described by

�nnH3O
þ � �nnOH� ¼ N2

a � 106 � Kw: ð46Þ

The number of water molecules dissociated into H3O
þ and OH�

ions, Nd, can be determined by Equations (33)�(36), (43), (45), and
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(46). Finally, the mass conservation of ions in the half space, Equa-
tions (37a) and (37b), can be further expressed as

ZH
0

nþ dx ¼ n1Hþ �nnH3O
þH; ð47aÞ

ZH
0

n� dx ¼ n1Hþ �nnOH�H: ð47bÞ

The assumption given by Equation (46) may introduce some errors
in calculating the unknown constants involved in Equations (31) and
(32). A more general treatment is to determine the local concentra-
tions of the H3O

þ and OH� ions first and then calculate the inte-
gration in Equations (37a) and (37b). However, it should be realized
that the mathematics involved in such a process is too complicated.
Furthermore, the purpose of introducing Equations (47a) and (47b)
is to calculate the unknown constants in Equations (31), (32a), and
(32b). Although the values of these constants may not be very accurate
as the result of our approximation, Equation (46), the approximation
will not introduce significant effects on the distributions of the electri-
cal potential and ionic concentrations that are determined by the func-
tions given in Equations (31), (32a), and (32b).

Numerical Scheme

Once the unknown parameters, nH
þ andnH

� , are determined by numeri-
cally solving Equations (43)�(47), Equations (31) and (32) can be
solved to obtain the potential and ionic concentration fields in the
liquid between two charged flat surfaces. This allows the osmotic
pressure to be calculated by Equation (17). The repulsive energy can
be obtained by integrating the osmotic pressure over the separation
distance and then the total potential energy of interaction can be cal-
culated by adding repulsive energy and attractive energy together.

It should be pointed out that this new model used correct boundary
conditions to obtain the ionic concentrations instead of using the
Boltzmann distribution that is not valid for such a small system, as
discussed earlier. In addition, this model did not use the approxima-
tions in evaluating the osmotic pressure that are used in the tra-
ditional treatment. Since the osmotic pressure is uniform across the
separation distance, the repulsive energy can be obtained by multiply-
ing the calculated osmotic pressure by the separation distance, D. The
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total interaction energy is the sum of both the repulsive energy and
the attraction energy.

RESULTS AND DISCUSSIONS

Figures 2�4 show the comparison of the model-predicted total interac-
tion energy between the traditional model (Equation (23)) and the
modified model for 10�3 M, 10� 4M, and 10�5M KCl solution, respect-
ively. It should be noted that the new model developed here considers
the contribution of the dissociated water ions to the repulsive energy
and, in turn, the total interaction energy. However, the traditional
model, Equation (23), does not consider this contribution. In order to
compare these two models in predicting the total interaction energy,
the contribution of the dissociated water ions to the repulsive energy
has been added in the traditional model, as shown in these plots.

Figures 2 and 3 show that the traditional model predicts a higher
total interaction energy as compared with the modified model. This
is because of the approximations [2] used in the traditional model
(Equation (23)) to simplify the calculation of the osmotic pressure. A
key mathematical approximation used in the calculation of the osmotic

FIGURE 2 Comparison of the total potential energy of interaction between
the traditional model prediction and the modified model prediction for
10�3M KCl solution.
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FIGURE 3 Comparison of the total potential energy of interaction between
the traditional model prediction and the modified model prediction for
10�4M KCl solution.

FIGURE 4 Comparison of the total potential energy of interaction between
the traditional model prediction and the modified model prediction for
10�5M KCl solution.
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pressure in the traditional model is tanh x � x. However, we know the
following relationship is generally true, tanh x � x= 1þ 0:5 x2

� �
60; x.

This assumption leads to an overestimation of the osmotic pressure;
consequently, the repulsive energy and the total interaction energy,
which are proportional to the osmotic pressure, are overestimated.

Figure 4 shows the comparison of the model-predicted total interac-
tion energy between the traditional model and the modified model for
10� 5M KCl solution. Similar to the cases of higher concentration solu-
tions (Figures 2 and 3), the traditional model predicts a higher total
interaction energy when the separation distance is larger than
0.3(1=j). However, when the separation distance is small, the modified
model predicts a higher peak than the traditional model. This is
because, for low concentration solutions, the EDL thickness is larger
(i.e., 1=j � 90nm for 10� 5M KCl solution). When the separation dis-
tance between the two plates is small (0.3(1=j) ¼ 30nm), the EDL field
overlaps significantly. In such a situation, the traditional model
underestimates the ionic concentration at the middle plane due to
the misuse of the Boltzmann distribution. Since the osmotic pressure
is proportional to the concentration difference at the middle plane (see
Equation (17)), consequently the osmotic pressure is underestimated
by the traditional model. Therefore, the repulsive energy and the total
interaction energy, which are proportional to the osmotic pressure, are
underestimated when the separation distance is small.

The underestimation of ionic concentration at the middle plane
for a small separation distance is shown in Figure 5a, which shows the
comparison of the model-predicted ionic concentration between the
traditional Poisson-Boltzmann model and the modified model for
10�5M KCl solution. It can be seen that the sum of the concentrations
of the counterions and the coions at the middle plane (jH ¼ 1) pre-
dicted by the modified model (2:30� 10�5 M KCl) is higher than that
predicted by the traditional model (2:26� 10�5 M KCl). Therefore,
the modified model predicts a larger concentration difference at the
middle plane than that predicted by the traditional model. According
to Equation (17), this will lead to a higher osmotic pressure. As a
result, the repulsive energy and then the total potential energy, both
of which are proportional to the osmotic pressure, will be predicted
to be higher by the modified model than by the traditional model. It
is easy to understand that when the separation distance is increased,
the difference between these two models decreases and eventually the
two models become the same, as shown in Figure 5b.

Figure 6 shows the comparison of the predicted repulsive energy
between the traditional model and the modified model. It can be
clearly seen that, when the separation distance is small or the EDL
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FIGURE 5 Comparison of the concentration distributions of counterions and
coions between the traditional model predictions and the modified model
predictions for 10�5M KCl solution: (a) jH ¼ 1 and (b) jH ¼ 50.
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fields overlap significantly, the traditional model underestimates the
repulsive energy due to the underestimation of the ionic concentra-
tions by use of the Boltzmann distribution, as shown in Figure 5a.
Therefore, the traditional model underestimates the total interaction
energy (seen in Figure 4) when the separation distance is small, since
the total interaction energy is the sum of the repulsive energy and the
attraction energy, and the attraction energy is constant for a given
system.

SUMMARY

A new theoretical model is developed to evaluate the electrostatic
interaction energy between two charged flat surfaces. This modified
model does not use the Boltzmann distribution for the ionic concentra-
tions because the boundary conditions used to derive the Boltzmann
distribution are not valid for two charged flat plates with a small sep-
aration distance. Instead, this modified model employs the Poisson
equation, the Nernst equation, and the mass conservation conditions
to find the concentrations of counterions and coions. In addition, the
approximations used in the traditional treatment to simplify osmotic
pressure are not used in this model. The osmotic pressure is directly

FIGURE 6 Comparison of the repulsive energy between the traditional model
predictions and the modified model predictions for 10� 5M KCl solution.
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evaluated based on the ionic concentration distribution predicted by
this new model. The total interaction energy is finally examined based
on this modified model and is compared with that predicted by the tra-
ditional model. It has been found that the traditional model overesti-
mates the total interaction energy for high concentration solutions
(10�3M and 10�4M KCl solutions) at the full range of separation dis-
tance and overestimates the total interaction energy for low concen-
tration solutions, e.g., 10�5M KCl solution, at relatively larger
separation distances. However, it underestimates the peak value of
the total interaction energy at a small separation distance for
10�5M KCl solution. This is because the misuse of the Boltzmann dis-
tribution leads to underestimation of the ionic concentration difference
at the middle plane and, in turn, underestimation of the electrostatic
interaction energy.
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